МИНИСТЕРСТВО ОБРАЗОВАНИЯ ПЕНЗЕНСКОЙ ОБЛАСТИ

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ПЕНЗЕНСКОЙ ОБЛАСТИ «МНОГОПРОФИЛЬНАЯ ГИМНАЗИЯ №13»

РАССМОТРЕНО	СОГЛАСОВАНО	УТВЕРЖДАЮ	
На заседании кафедры	Педагогическим советом	Директор ГАОУ ПО «Многопрофильная гимназия Л 13»	
учителей математики,	ГАОУ ПО «Многопрофильная гимназия № 13»		
физики, информатики,			
технологии, физической			
культуры и ОБЗР			
	Протокол № 12	Паньженский Е.В.	
от 28.08.2025г.	от 29.08.2025г.	Приказ № 158 от 01.09.2025 г.	

РАБОЧАЯ ПРОГРАММА

Математика: учебная практика

11 класс

Цели программы:

- познакомить с элементами современной математики, выходящей за рамки школьного курса;
- развить навыки научного мышления, анализа, обоснования гипотез;
- показать роль математики в научных исследованиях.

Задачи программы:

1. Развивающие задачи

формировать у учащихся умение рассуждать логически, аргументировать и доказывать математические утверждения;

развивать абстрактное и аналитическое мышление, способность видеть закономерности и обобщать;

воспитывать научное мировоззрение, способность воспринимать математику как универсальный язык науки.

2. Образовательные задачи

углубить представления о структуре современной математики (алгебра, теория чисел, анализ, топология, теория вероятностей); познакомить с методами математического исследования и моделирования; освоить базовые элементы высшей математики на доступном уровне (предел, ряды, дифференциальные уравнения, теория игр и др.); сформировать навыки применения математики к решению научных и прикладных задач.

3. Практико-ориентированные задачи

развить навыки самостоятельного поиска информации, постановки гипотез и их проверки;

научить работать с вычислительными и графическими инструментами (таблицы, компьютерное моделирование, простейшие программы); подготовить учащихся к участию в научно-практических конференциях, проектных и исследовательских конкурсах.

Планируемые результаты освоения программы: Личностные результаты понимание роли математики как фундаментальной науки; развитие познавательной активности, научного стиля мышления и ответственности за результаты своей работы;

осознание значения математики для научного и технологического прогресса.

Метапредметные результаты

умение применять математические методы при решении задач из других областей знаний (физика, информатика, экономика и др.);

навыки исследовательской и проектной деятельности: постановка цели,

выдвижение гипотезы, анализ и интерпретация данных;

развитие коммуникативных навыков — умение представлять и защищать результаты своей работы.

Предметные результаты

Обучающийся должен:

1. Знать:

основные идеи и методы современной математики (логика, теория множеств, алгебраические структуры, элементы анализа, топология, теория вероятностей);

роль аксиоматики и доказательств в научной математике; значение математического моделирования и статистических методов.

2. Уметь:

проводить математические рассуждения и доказательства;

решать прикладные и исследовательские задачи, в том числе с элементами вычислительной математики;

использовать математические модели для описания реальных процессов; применять ИКТ-средства для представления и анализа данных.

3. Владеть:

приёмами работы с информацией (сбор, обработка, визуализация); методами самоконтроля и самооценки результатов; базовыми элементами исследовательской культуры: формулировка проблемы, планирование эксперимента, интерпретация выводов.

Формы работы:

лекционно-практические занятия;

исследовательские мини-проекты;

моделирование и эксперимент;

обсуждение научных статей и исторических примеров.

Тематическое планирование:

- 1. Математика, как наука (5 часов).
- 2. Теория чисел и алгебраические структуры (7 часов).
- 3. Анализ и приближенные методы (7 часов).
- 4. Геометрия и топология (6 часов).
- 5. Вероятность, статистика и теория информации (6 часов).
- 6. Итоговые проекты (3 часа).

№ урока	Тема	Содержание	Форма работы	Планируемый результат
1	Математика как форма научного знания	Роль математики в науке, структура и методы	Беседа, лекция	Понимание математики как науки
2	Аксиоматика	Аксиомы и их значение	Разбор примеров	Осознание роли аксиом
3	Логика и доказательство	Дедуктивный и индуктивный подход	Практические задачи	Умение различать методы доказательств
4	Теория множеств	Основные понятия и парадоксы	Работа с примерами	Формирование представлений о множествах
5	Современные направления математики	Обзор разделов математики	Обсуждение	Знание о современных направлениях
6	Простые числа	Свойства простых чисел	Решение задач	Знание основных свойств
7	Великая теорема Ферма	История и современные исследования	Сообщение, обсуждение	Понимание значения теоремы
8	Делимость и алгоритм Евклида	Разбор алгоритма Евклида	Практика	Умение применять алгоритм
9	Конгруэнции	Сравнения по модулю	Решение задач	Навыки работы с конгруэнциями

10	Алгебраические структуры	Группы, кольца, поля	Примеры	Общее представление о структурах
11	Симметрии и группы	Симметрии в математике и природе	Работа с изображениями	Понимание групп через симметрии
12	Теория чисел в криптографии	Применение сравнения по модулю	Практические примеры	Осознание применения математики
13	Предел и бесконечно малые	Интуиция и строгие определения	Решение задач	Понимание пределов
14	Ряд Тейлора	Приближения функций	Примеры и практика	Навыки работы с рядами
15	Метод Ньютона	Численные методы решения уравнений	Решение примеров	Знание метода касательных
16	Численное интегрирование	Методы трапеций и прямоугольников	Практика	Навыки приближённых вычислений
17	Дифференциальные уравнения	Простейшие модели роста	Решение задач	Понимание применения ДУ
18	Системы уравнений	Численные методы решения	Примеры	Навыки решения систем
19	Моделирование процессов	Физические и прикладные примеры	Мини-проект	Навыки моделирования
20	Невозможные построения	Классические задачи античности	Разбор	Знание о невозможности задач
21	Топология	Непрерывность и топологические представления	Обсуждение	Понимание понятий топологии
22	Поверхности и пространства	Многомерные пространства	Примеры	Общее представление о пространствах
23	Топология узлов	Узлы и зацепления	Визуализация	Знание об узлах
24	Проективная геометрия	Идеи и примеры	Практические задания	Понимание основ
25	Фракталы	Самоподобие и хаос	Работа с изображениями	Знание о фракталах

26	Вероятностные модели	Закон больших чисел	Решение задач	Понимание вероятностных моделей
27	Центральная предельная теорема	Суть и значение	Разбор примеров	Знание основ статистики
28	Теория игр	Стратегии и математика выбора	Игровые ситуации	Навыки анализа стратегий
29	Энтропия	Понятие информации	Примеры	Понимание энтропии
30	Кодирование	Передача информации	Практика	Навыки кодирования
31	Стохастические модели	Прогнозирование случайных процессов	Примеры	Знание моделей
32	Постановка исследовательской задачи	Работа в группах	Практикум	Умение формулировать задачи
33	Защита проектов	Презентации учащихся	Проектная работа	Навыки защиты проекта
34	Итоговое занятие	Рефлексия и выводы	Обсуждение	Понимание роли математики в науке

Использованная литература:

1. Основная литература

- 1. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. *Геометрия*. *7–11 классы*. М.: Просвещение, 2021.
- 2. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: Наука, 2020.
- 3. Кудрявцев Л. Д. *Курс математического анализа*. М.: Физматлит, 2018.
- 4. Дорофеев Г. В., Шарыгин И. Ф. *Математика*. 10–11 классы: учебник для углубленного изучения. М.: Бином, 2022.
- 5. Демидович Б. П. *Сборник задач и упражнений по математическому анализу.* М.: Наука, 2021.

2. Дополнительная литература

- 6. Степанов В. В. *Введение в современную математику*. СПб.: Питер, 2019.
- 7. Глейзер Г. И. *История математики в школе*. М.: Просвещение, 2017.
- 8. Новоселов К. Е. *Математическое моделирование: от школьных задач к науке.* М.: МЦНМО, 2020.
- 9. Фаддеев Д. К., Фаддеева В. Н. *Вычислительные методы линейной* алгебры. М.: Наука, 2019.
- 10.Хофштадтер Д. Гёдель, Эшер, Бах: эта бесконечная гирлянда. М.: Альпина нон-фикшн, 2021.
- 3. Электронные и интернет-ресурсы
 - 11. Образовательная платформа «Фоксфорд»: https://foxford.ru
 - 12.Математический портал MathWorld (Wolfram Research): https://mathworld.wolfram.com
 - 13. Электронная библиотека eLIBRARY.RU научные публикации по математике.
 - 14. Российская электронная школа (РЭШ): https://resh.edu.ru
 - 15.Сайт «Математика в контексте науки и технологий»: https://mathscitech.ru